R/rxrandom.R
rxnormV.Rd
Simulate random normal variable from threefry/vandercorput generator
rxnorm(mean = 0, sd = 1, n = 1L, ncores = 1L)
rxnormV(mean = 0, sd = 1, n = 1L, ncores = 1L)
mean | vector of means. |
---|---|
sd | vector of standard deviations. |
n | number of observations |
ncores | Number of cores for the simulation
|
normal random number deviates
# \donttest{
## Use threefry engine
rxnorm(n = 10) # with rxnorm you have to explicitly state n
#> [1] -2.8807429 -0.1678537 0.6332729 0.7161145 0.4543867 -0.4340744
#> [7] -0.2305373 0.3204707 1.6692535 0.3048113
rxnorm(n = 10, ncores = 2) # You can parallelize the simulation using openMP
#> [1] -0.1558854 0.3961505 -0.7778066 -0.2628406 -0.6837131 -0.1957431
#> [7] -1.6115893 0.7430801 -1.1665228 -1.7312264
rxnorm(2, 3) ## The first 2 arguments are the mean and standard deviation
#> [1] -0.534782
## This example uses `rxnorm` directly in the model
rx <- RxODE({
a <- rxnorm()
})
#>
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
## Use vandercorput generator
rxnormV(n = 10) # with rxnorm you have to explicitly state n
#> [1] -0.39234507 0.53917036 -0.09647992 1.72474694 -1.71178296 0.07276450
#> [7] -0.53909037 0.38449969 -1.31794264 1.55198378
rxnormV(n = 10, ncores = 2) # You can parallelize the simulation using openMP
#> [1] -1.8015773 1.8246042 0.7963448 -1.8015773 -0.4719304 0.7963448
#> [7] 0.5166386 -0.4719304 -0.4376811 0.5166386
rxnormV(2, 3) ## The first 2 arguments are the mean and standard deviation
#> [1] -3.214173
## This example uses `rxnormV` directly in the model
rx <- RxODE({
a <- rxnormV()
})
#>
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
# }