In general, RxODE event tables follow NONMEM dataset convention with the exceptions:
cmt
) can be a string/factor with compartment names
cmt
) can still be a number, the number of the compartment is defined by the appearance of the compartment name in the model. This can be tedious to count, so you can specify compartment numbers easier by using the cmt(cmtName)
at the beginning of the model.dur
can specify the duration of infusions;
dur
/amt
are fixed in the input data.rate
/amt
for an infusion, the bioavailability will change the infusion duration since rate
/amt
are fixed in the input data.pcmt
, call
.evid=5
or replace event; This replaces the value of a compartment with the value specified in the amt
column. This is equivalent to deSolve
=replace
.evid=6
or multiply event; This multiplies the value in the compartment with the value specified by the amt
column. This is equivalent to deSolve
=multiply
.Here are the legal entries to a data table:
Data Item | Meaning | Notes |
---|---|---|
id | Individual identifier | Can be a integer, factor, character, or numeric |
time | Individual time | Numeric for each time. |
amt | dose amount | Positive for doses zero/NA for observations |
rate | infusion rate | When specified the infusion duration will be dur=amt/rate |
rate = -1, rate modeled; rate = -2, duration modeled | ||
dur | infusion duration | When specified the infusion rate will be rate = amt/dur |
evid | event ID | 0=Observation; 1=Dose; 2=Other; 3=Reset; 4=Reset+Dose; 5=Replace; 6=Multiply |
cmt | Compartment | Represents compartment #/name for dose/observation |
ss | Steady State Flag | 0 = non-steady-state; 1=steady state; 2=steady state +prior states |
ii | Inter-dose Interval | Time between doses. |
addl | # of additional doses | Number of doses like the current dose. |
Other notes:
evid
can be the classic RxODE (described here) or the NONMEM
-style evid
described above.NONMEM
’s DV
is not required; RxODE
is a ODE solving framework.NONMEM
’s MDV
is not required, since it is captured in EVID
.NONMEM
-compatible data, it can accept deSolve
compatible data-frames.When returning the RxODE solved data-set there are a few additional event ids (EVID
) that you may see depending on the solving options:
EVID = -1
is when a modeled rate ends (corresponds to rate = -1
)EVID = -2
is when a modeled duration ends (corresponds to rate=-2
)EVID = -10
when a rate specified zero-order infusion ends (corresponds to rate > 0
)EVID = -20
when a duration specified zero-order infusion ends (corresponds to dur > 0
)EVID = 101, 102, 103,...
These correspond to the 1
, 2
, 3
, … modeled time (mtime
).These can only be accessed when solving with the option combination addDosing=TRUE
and subsetNonmem=FALSE
. If you want to see the classic EVID
equivalents you can use addDosing=NA
.
To illustrate the event types we will use the model from the original RxODE tutorial.
#> RxODE 1.1.1 using 1 threads (see ?getRxThreads)
#> no cache: create with `rxCreateCache()`
## Model from RxODE tutorial
m1 <-RxODE({
KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
## Added modeled bioavaiblity, duration and rate
fdepot = 1;
durDepot = 8;
rateDepot = 1250;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
f(depot) = fdepot
dur(depot) = durDepot
rate(depot) = rateDepot
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
eff(0) = 1
});
A bolus dose is the default type of dose in RxODE and only requires the amt
/dose
. Note that this uses the convenience function et()
described in the RxODE event tables
#> -------------------------- EventTable with 101 records -------------------------
#>
#> 1 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 101 x 5
#> time amt ii addl evid
#> [h] <dbl> [h] <int> <evid>
#> 1 0 NA NA NA 0:Observation
#> 2 0 10000 12 2 1:Dose (Add)
#> 3 0.242 NA NA NA 0:Observation
#> 4 0.485 NA NA NA 0:Observation
#> 5 0.727 NA NA NA 0:Observation
#> 6 0.970 NA NA NA 0:Observation
#> 7 1.21 NA NA NA 0:Observation
#> 8 1.45 NA NA NA 0:Observation
#> 9 1.70 NA NA NA 0:Observation
#> 10 1.94 NA NA NA 0:Observation
#> # ... with 91 more rows
There are a few different type of infusions that RxODE supports:
rate
)dur
)The next type of event is an infusion; There are two ways to specify an infusion; The first is the dur
keyword.
An example of this is:
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12,until=24, dur=8) %>%
et(seq(0, 24, length.out=100))
ev
#> -------------------------- EventTable with 101 records -------------------------
#>
#> 1 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 101 x 6
#> time amt ii addl evid dur
#> [h] <dbl> [h] <int> <evid> [h]
#> 1 0 NA NA NA 0:Observation NA
#> 2 0 10000 12 2 1:Dose (Add) 8
#> 3 0.242 NA NA NA 0:Observation NA
#> 4 0.485 NA NA NA 0:Observation NA
#> 5 0.727 NA NA NA 0:Observation NA
#> 6 0.970 NA NA NA 0:Observation NA
#> 7 1.21 NA NA NA 0:Observation NA
#> 8 1.45 NA NA NA 0:Observation NA
#> 9 1.70 NA NA NA 0:Observation NA
#> 10 1.94 NA NA NA 0:Observation NA
#> # ... with 91 more rows
It can be also specified by the rate
component:
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12,until=24, rate=10000/8) %>%
et(seq(0, 24, length.out=100))
ev
#> -------------------------- EventTable with 101 records -------------------------
#>
#> 1 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 101 x 6
#> time amt rate ii addl evid
#> [h] <dbl> <rate/dur> [h] <int> <evid>
#> 1 0 NA NA NA NA 0:Observation
#> 2 0 10000 1250 12 2 1:Dose (Add)
#> 3 0.242 NA NA NA NA 0:Observation
#> 4 0.485 NA NA NA NA 0:Observation
#> 5 0.727 NA NA NA NA 0:Observation
#> 6 0.970 NA NA NA NA 0:Observation
#> 7 1.21 NA NA NA NA 0:Observation
#> 8 1.45 NA NA NA NA 0:Observation
#> 9 1.70 NA NA NA NA 0:Observation
#> 10 1.94 NA NA NA NA 0:Observation
#> # ... with 91 more rows
These are the same with the exception of how bioavailability changes the infusion.
In the case of modeling rate
, a bioavailability decrease, decreases the infusion duration, as in NONMEM. For example:
Similarly increasing the bioavailability increases the infusion duration.
The rationale for this behavior is that the rate
and amt
are specified by the event table, so the only thing that can change with a bioavailability increase is the duration of the infusion.
If you specify the amt
and dur
components in the event table, bioavailability changes affect the rate
of infusion.
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12,until=24, dur=8) %>%
et(seq(0, 24, length.out=100))
You can see the side-by-side comparison of bioavailability changes affecting rate
instead of duration with these records in the following plots:
You can model the duration, which is equivalent to NONMEM’s rate=-2
. As a mnemonic you can use the dur=model
instead of rate=-2
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12,until=24, dur=model) %>%
et(seq(0, 24, length.out=100))
ev
#> -------------------------- EventTable with 101 records -------------------------
#>
#> 1 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 101 x 6
#> time amt rate ii addl evid
#> [h] <dbl> <rate/dur> [h] <int> <evid>
#> 1 0 NA NA NA NA 0:Observation
#> 2 0 10000 -2:dur 12 2 1:Dose (Add)
#> 3 0.242 NA NA NA NA 0:Observation
#> 4 0.485 NA NA NA NA 0:Observation
#> 5 0.727 NA NA NA NA 0:Observation
#> 6 0.970 NA NA NA NA 0:Observation
#> 7 1.21 NA NA NA NA 0:Observation
#> 8 1.45 NA NA NA NA 0:Observation
#> 9 1.70 NA NA NA NA 0:Observation
#> 10 1.94 NA NA NA NA 0:Observation
#> # ... with 91 more rows
Similarly, you may also model rate. This is equivalent to NONMEM’s rate=-1
and is how RxODE’s event table specifies the data item as well. You can also use rate=model
as a mnemonic:
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12,until=24, rate=model) %>%
et(seq(0, 24, length.out=100))
ev
#> -------------------------- EventTable with 101 records -------------------------
#>
#> 1 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 101 x 6
#> time amt rate ii addl evid
#> [h] <dbl> <rate/dur> [h] <int> <evid>
#> 1 0 NA NA NA NA 0:Observation
#> 2 0 10000 -1:rate 12 2 1:Dose (Add)
#> 3 0.242 NA NA NA NA 0:Observation
#> 4 0.485 NA NA NA NA 0:Observation
#> 5 0.727 NA NA NA NA 0:Observation
#> 6 0.970 NA NA NA NA 0:Observation
#> 7 1.21 NA NA NA NA 0:Observation
#> 8 1.45 NA NA NA NA 0:Observation
#> 9 1.70 NA NA NA NA 0:Observation
#> 10 1.94 NA NA NA NA 0:Observation
#> # ... with 91 more rows
These doses are solved until a steady state is reached with a constant inter-dose interval.
#> -------------------------- EventTable with 101 records -------------------------
#>
#> 1 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 101 x 5
#> time amt ii evid ss
#> [h] <dbl> [h] <evid> <int>
#> 1 0 NA NA 0:Observation NA
#> 2 0 10000 12 1:Dose (Add) 1
#> 3 0.242 NA NA 0:Observation NA
#> 4 0.485 NA NA 0:Observation NA
#> 5 0.727 NA NA 0:Observation NA
#> 6 0.970 NA NA 0:Observation NA
#> 7 1.21 NA NA 0:Observation NA
#> 8 1.45 NA NA 0:Observation NA
#> 9 1.70 NA NA 0:Observation NA
#> 10 1.94 NA NA 0:Observation NA
#> # ... with 91 more rows
By using the ss=2
flag, you can use the super-positioning principle in linear kinetics to get steady state nonstandard dosing (i.e. morning 100 mg vs evening 150 mg). This is done by:
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=24, ss=1) %>%
et(time=12, amt=15000, ii=24, ss=2) %>%
et(time=24, amt=10000, ii=24, addl=3) %>%
et(time=36, amt=15000, ii=24, addl=3) %>%
et(seq(0, 64, length.out=500))
library(ggplot2)
rxSolve(m1, ev,maxsteps=10000) %>% plot(C2) +
annotate("rect", xmin=0, xmax=24, ymin=-Inf, ymax=Inf,
alpha=0.2) +
annotate("text", x=12.5, y=7,
label="Initial Steady State Period") +
annotate("text", x=44, y=7,
label="Steady State AM/PM dosing")
You can see that it takes a full dose cycle to reach the true complex steady state dosing.
The last type of steady state that RxODE supports is steady-state constant infusion rate. This can be specified the same way as NONMEM, that is:
ii
=0
ss
=1
rate
>0) or a estimated rate rate
=-1
.amt
=0
Note that rate
=-2
where we model the duration of infusion doesn’t make much sense since we are solving the infusion until steady state. The duration is specified by the steady state solution.
Also note that bioavailability changes on this steady state infusion also do not make sense because they neither change the rate
or the duration of the steady state infusion. Hence modeled bioavailability on this type of dosing event is ignored.
Here is an example:
ev <- et(timeUnits="hr") %>%
et(amt=0, ss=1,rate=10000/8)
p1 <- rxSolve(m1, ev) %>% plot(C2, eff)
ev <- et(timeUnits="hr") %>%
et(amt=200000, rate=10000/8) %>%
et(0, 250, length.out=1000)
p2 <- rxSolve(m1, ev) %>% plot(C2, eff)
library(patchwork)
p1 / p2
Not only can this be used for PK, it can be used for steady-state disease processes.
Reset events are implemented by evid=3
or evid=reset
, for reset and evid=4
for reset and dose.
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12, addl=3) %>%
et(time=6, evid=reset) %>%
et(seq(0, 24, length.out=100))
ev
#> -------------------------- EventTable with 102 records -------------------------
#>
#> 2 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 102 x 5
#> time amt ii addl evid
#> [h] <dbl> [h] <int> <evid>
#> 1 0 NA NA NA 0:Observation
#> 2 0 10000 12 3 1:Dose (Add)
#> 3 0.242 NA NA NA 0:Observation
#> 4 0.485 NA NA NA 0:Observation
#> 5 0.727 NA NA NA 0:Observation
#> 6 0.970 NA NA NA 0:Observation
#> 7 1.21 NA NA NA 0:Observation
#> 8 1.45 NA NA NA 0:Observation
#> 9 1.70 NA NA NA 0:Observation
#> 10 1.94 NA NA NA 0:Observation
#> # ... with 92 more rows
The solving show what happens in this system when the system is reset at 6 hours post-dose.
You can see all the compartments are reset to their initial values. The next dose start the dosing cycle over.
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12, addl=3) %>%
et(time=6, amt=10000, evid=4) %>%
et(seq(0, 24, length.out=100))
ev
#> -------------------------- EventTable with 102 records -------------------------
#>
#> 2 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 102 x 5
#> time amt ii addl evid
#> [h] <dbl> [h] <int> <evid>
#> 1 0 NA NA NA 0:Observation
#> 2 0 10000 12 3 1:Dose (Add)
#> 3 0.242 NA NA NA 0:Observation
#> 4 0.485 NA NA NA 0:Observation
#> 5 0.727 NA NA NA 0:Observation
#> 6 0.970 NA NA NA 0:Observation
#> 7 1.21 NA NA NA 0:Observation
#> 8 1.45 NA NA NA 0:Observation
#> 9 1.70 NA NA NA 0:Observation
#> 10 1.94 NA NA NA 0:Observation
#> # ... with 92 more rows
In this case, the whole system is reset and the dose is given
You may also turn off a compartment, which is similar to a reset event.
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12, addl=3) %>%
et(time=6, cmt="-depot", evid=2) %>%
et(seq(0, 24, length.out=100))
ev
#> -------------------------- EventTable with 102 records -------------------------
#>
#> 2 dosing records (see x$get.dosing(); add with add.dosing or et)
#> 100 observation times (see x$get.sampling(); add with add.sampling or et)
#> multiple doses in `addl` columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------------------------------------------------------------
#> # A tibble: 102 x 6
#> time cmt amt ii addl evid
#> [h] <chr> <dbl> [h] <int> <evid>
#> 1 0 (obs) NA NA NA 0:Observation
#> 2 0 (default) 10000 12 3 1:Dose (Add)
#> 3 0.242 (obs) NA NA NA 0:Observation
#> 4 0.485 (obs) NA NA NA 0:Observation
#> 5 0.727 (obs) NA NA NA 0:Observation
#> 6 0.970 (obs) NA NA NA 0:Observation
#> 7 1.21 (obs) NA NA NA 0:Observation
#> 8 1.45 (obs) NA NA NA 0:Observation
#> 9 1.70 (obs) NA NA NA 0:Observation
#> 10 1.94 (obs) NA NA NA 0:Observation
#> # ... with 92 more rows
Solving shows what this does in the system:
In this case, the depot is turned off, and the depot compartment concentrations are set to the initial values but the other compartment concentrations/levels are not reset. When another dose to the depot is administered the depot compartment is turned back on.
Note that a dose to a compartment only turns back on the compartment that was dosed. Hence if you turn off the effect compartment, it continues to be off after another dose to the depot.
ev <- et(timeUnits="hr") %>%
et(amt=10000, ii=12, addl=3) %>%
et(time=6, cmt="-eff", evid=2) %>%
et(seq(0, 24, length.out=100))
rxSolve(m1, ev) %>% plot(depot,C2, eff)
To turn back on the compartment, a zero-dose to the compartment or a evid=2 with the compartment would be needed.