This is for the so-called inner problem.
rxSEinner(
obj,
predfn,
pkpars = NULL,
errfn = NULL,
init = NULL,
grad = FALSE,
sum.prod = FALSE,
pred.minus.dv = TRUE,
only.numeric = FALSE,
optExpression = TRUE,
interaction = TRUE,
...,
promoteLinSens = TRUE,
theta = FALSE,
addProp = c("combined2", "combined1")
)
rxSymPySetupPred(
obj,
predfn,
pkpars = NULL,
errfn = NULL,
init = NULL,
grad = FALSE,
sum.prod = FALSE,
pred.minus.dv = TRUE,
only.numeric = FALSE,
optExpression = TRUE,
interaction = TRUE,
...,
promoteLinSens = TRUE,
theta = FALSE,
addProp = c("combined2", "combined1")
)
obj | RxODE object |
---|---|
predfn | Prediction function |
pkpars | Pk Pars function |
errfn | Error function |
init | Initialization parameters for scaling. |
grad | Boolaen indicated if the the equations for the gradient be calculated |
sum.prod | A boolean determining if RxODE should use more numerically stable sums/products. |
pred.minus.dv | Boolean stating if the FOCEi objective function is based on PRED-DV (like NONMEM). Default TRUE. |
only.numeric | Instead of setting up the sensitivities for the inner problem, modify the RxODE to use numeric differentiation for the numeric inner problem only. |
optExpression | Optimize the model text for computer evaluation. |
interaction | Boolean to determine if dR^2/deta is calculated for FOCEi (not needed for FOCE) |
promoteLinSens | Promote solved linear compartment systems to sensitivity-based solutions. |
theta | Calculate THETA derivatives instead of ETA derivatives. By default FALSE |
addProp | one of "combined1" and "combined2"; These are the two forms of additive+proportional errors supported by monolix/nonmem: combined1: transform(y)=transform(f)+(a+b*f^c)*eps combined2: transform(y)=transform(f)+(a^2+b^2*f^(2c))*eps |
RxODE object expanded with predfn and with calculated sensitivities.
Matthew L. Fidler