Fit a generalized nonlinear mixed-effect model by adaptive Gaussian quadrature (AQD)
log-likelihood function
data to be fitted
initial values
function: calculation of PK parameters
an optional (compiled) RxODE object
transformation to diagonal elements of OMEGA during fitting
additional options
additional optimization options
gnlmm fit object
Fit a generalized nonlinear mixed-effect model by adaptive Gaussian quadrature (AGQ)
# \donttest{
if (FALSE) {
llik <- function() {
lp <- THETA[1] * x1 + THETA[2] * x2 + (x1 + x2 * THETA[3]) * ETA[1]
p <- pnorm(lp)
dbinom(x, m, p, log = TRUE)
}
inits <- list(THTA = c(1, 1, 1), OMGA = list(ETA[1] ~ 1))
try(gnlmm(llik, rats, inits, control = list(nAQD = 1)))
llik <- function() {
if (group == 1) {
lp <- THETA[1] + THETA[2] * logtstd + ETA[1]
} else {
lp <- THETA[3] + THETA[4] * logtstd + ETA[1]
}
lam <- exp(lp)
dpois(y, lam, log = TRUE)
}
inits <- list(THTA = c(1, 1, 1, 1), OMGA = list(ETA[1] ~ 1))
fit <- try(gnlmm(llik, pump, inits,
control = list(
reltol.outer = 1e-4,
optim.outer = "nmsimplex",
nAQD = 5
)
))
ode <- "
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - KE*centr;
"
sys1 <- RxODE(ode)
pars <- function() {
CL <- exp(THETA[1] + ETA[1]) # ; if (CL>100) CL=100
KA <- exp(THETA[2] + ETA[2]) # ; if (KA>20) KA=20
KE <- exp(THETA[3])
V <- CL / KE
sig2 <- exp(THETA[4])
}
llik <- function() {
pred <- centr / V
dnorm(DV, pred, sd = sqrt(sig2), log = TRUE)
}
inits <- list(THTA = c(-3.22, 0.47, -2.45, 0))
inits$OMGA <- list(ETA[1]+ETA[2]~c(.027, .01, .37))
theo <- theo_md
fit <- try(gnlmm(llik, theo, inits, pars, sys1,
control = list(trace = TRUE, nAQD = 1)
))
fit2 <- try(gnlmm2(llik, theo, inits, pars, sys1,
control = list(trace = TRUE, nAQD = 1)
))
if (inherits(fit, "gnlmm.fit")) {
cv <- calcCov(fit)
cbind(fit$par[fit$nsplt == 1], sqrt(diag(cv)))
}
}
# }