Fit a non-population dynamic model using mcmc
dynmodel.mcmc(
system,
model,
evTable,
inits,
data,
fixPars = NULL,
nsim = 500,
squared = TRUE,
seed = NULL
)
an RxODE object
a list of statistical measurement models
an Event Table object
initial values of system parameters
input data
fixed system parameters
number of mcmc iterations
if parameters be squared during estimation
random number seed
A dyn.mcmc object detailing the model fit
# \donttest{
ode <- "
dose=200;
pi = 3.1415926535897931;
if (t<=0) {
fI = 0;
} else {
fI = F*dose*sqrt(MIT/(2.0*pi*CVI2*t^3))*exp(-(t-MIT)^2/(2.0*CVI2*MIT*t));
}
C2 = centr/V2;
C3 = peri/V3;
d/dt(centr) = fI - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
"
sys1 <- RxODE(model = ode)
#>
## ------------------------------------------------------------------------
dat <- invgaussian
mod <- cp ~ C2 + prop(.1)
inits <- c(MIT = 190, CVI2 = .65, F = .92)
fixPars <- c(CL = .0793, V2 = .64, Q = .292, V3 = 9.63)
ev <- eventTable()
ev$add.sampling(c(0, dat$time))
(fit <- dynmodel.mcmc(sys1, mod, ev, inits, dat, fixPars))
#>
#> mean sd cv%
#> MIT 3.951691e+04 5.392877e+03 13.647012
#> CVI2 4.693712e-01 7.590158e-02 16.170908
#> F 8.302230e-01 5.687703e-02 6.850814
#> err1 1.227750e-02 9.331666e-03 76.006208
#>
#> # samples: 500
# }