nlmixr: an open-source package for pharmacometric modelling in R

Rik Schoemaker¹, Yuan Xiong², Justin Wilkins¹, Christian Laveille³, Wenping Wang⁴
¹Occams, The Netherlands, ²Certara Strategic Consulting, USA, ³SGS Exprimo, Belgium, ⁴Novartis Pharmaceuticals, USA

Aims

nlmixr is an open-source R package under development that builds on both RxODE¹, an R package for simulation of nonlinear mixed effect models using ordinary differential equations (ODEs), and the nlme² package in R, for parameter estimation in nonlinear mixed effect models. nlmixr greatly expands the utility of nlme by providing an efficient and versatile way to specify pharmacometric models and dosing scenarios, with rapid execution due to compilation in C++. NONMEM®³ with first-order conditional estimation with interaction was used as a comparator to test nlmixr.

Methods

Richly sampled profiles were simulated for 4 different dose levels (10, 30, 60 and 120 mg) of 30 subjects each as single dose (over 72h), multiple dose (4 daily doses), single and multiple dose combined, and steady state dosing, for a range of test models: 1- and 2-compartment disposition, with and without 1st order absorption, with either linear or Michaelis-Menten (MM) clearance (MM without steady state dosing). This provided a total of 42 test cases. All inter-individual variabilities (IIVs) were set at 30%, residual error at 20% and overlapping PK parameters were the same for all models. A similar set of models was previously used to compare NONMEM and Monolix⁴. Estimates of population parameters, standard errors for fixed-effect parameters, and run times were compared both for closed-form solutions and using ODEs.

Example code

Results

Theta parameter estimates were comparable across estimation methods; Figure 1 provides results for central volume of distribution (Vc) as illustration because it is the single parameter present in all models. Standard error estimates were obtained for all *nlmixr* models, but not all NONMEM models. IIV estimates were regularly estimated close to 0% for ill-defined model parameters like peripheral volume (Vp) in *nlmixr*, whereas NONMEM provided estimates closer to the original simulation values. In comparison to NONMEM, *nlmixr* was always faster for ODEs (MM-models) and comparable for closed-form models.

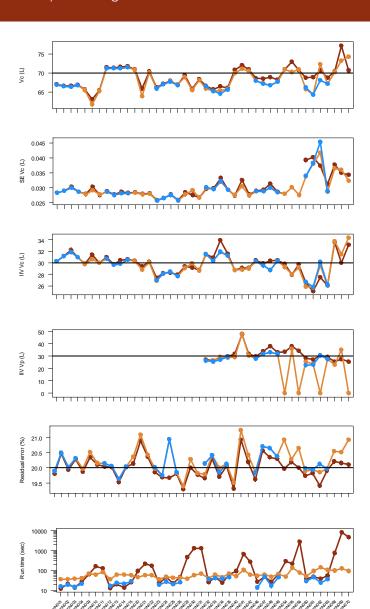


Figure 1. Theta, SE, and IIV estimates for Vc, IIV estimates for Vp, residual error, and log run times comparing NONMEM (red lines), *nlmix*rusing ODEs (orange lines) and closed-form *nlmix*r (blue lines). Horizontal line: value used for simulation.

Conclusions

These findings suggest that nlmixr provides a viable open-source parameter estimation procedure for nonlinear mixed effects pharmacometric models within the R environment.

References

¹Wang W *et al.* A Tutorial on RxODE. CPT:PSP (2016) 5, 3–10.

²Pinheiro J *et al.* (2016). nlme: Linear and Nonlinear Mixed Effects Models.

³Beal SL *et al.* 1989-2011. NONMEM Users Guides. Icon Development Solutions, USA.

⁴Laveille C *et al.* PAGE 17 (2008) Abstr 1356 [www.pagemeeting.org/?abstract=1356]

